
Cloud-Based Deep Learning: End-To-End
Full-Stack Handwritten Digit Recognition

Ruida Zeng, Aadarsh Jha, Ashwin Kumar, Terry Luo
{ruida.zeng, aadarsh.jha, ashwin.kumar, terry.luo}@vanderbilt.edu

School of Engineering
Vanderbilt University, Nashville, Tennessee, USA

Abstract—Herein, we present Stratus, an end-to-end full-stack
deep learning application deployed on the cloud. The rise of
productionized deep learning necessitates infrastructure in the
cloud [1] that can provide such service (IaaS). In this paper, we
explore the use of modern cloud infrastructure and micro-services
to deliver accurate and high-speed predictions to an end-user,
using a Deep Neural Network (DNN) to predict handwritten digit
input, interfaced via a full-stack application. We survey tooling
from Spark ML, Apache Kafka, Chameleon Cloud, Ansible,
Vagrant, Python Flask, Docker, and Kuberenetes in order to
realize this machine learning pipeline. Through our cloud-based
approach, we are able to demonstrate benchmark performance
on the MNIST dataset with a deep learning model.

Index Terms—Deep Learning, MNIST, Spark ML, Chameleon
Cloud, Ansible, Vagrant, Docker, Kubernetes.

I. INTRODUCTION

In recent years, Deep Neural Networks and Deep Learning
techniques have been leveraged to varying tasks due to their
efficiency, accuracy, and ease-of-implementation [2]. In partic-
ular, the task focused on within this project is classification –
we apply deep learning methods to predict handwritten digits
from the end-user. In order to train our model, we utilize the
MNIST [3] data set of handwritten digits.

A simple machine learning pipeline involves feeding input
to a trained model, and returning the predicted information.
However, in modern production environments, such a naive
approach will not scale to user demand and changes in input
data [4]. For this reason, concepts of cloud computing, such
as distributed workload, load balancing, cloud-as-a-service
(CaaS), dockerization, container orchestration, large-scale data
processing, as well as full automation are explored in order to
create a productionized machine learning pipeline. Working in
tandem, both deep Learning and cloud Computing principles
may create pipelines that are resilient to large-scale and
variable user input.

The primary motivation to build Stratus is to combine
the salient concepts of deep learning, cloud computing, and
web architecture in order to create an end-to-end pipeline
by which users may enter handwritten digits, and receive
an outputted value (Figure 1). In effect, this project is a
method of replicating a productionized, modern environment
in deploying a deep learning pipeline, but in a smaller, more
accessible scale. In particular, our deep learning pipeline will
allow for model training, prediction, and output. Our cloud
pipeline will orchestrate the deep learning infrastructure in

a persistent, distributed, and self-contained manner. Our full-
stack component will then interface with the user and our deep
learning and cloud backend, allowing for ease-of-use and an
intuitive user interface.

Furthermore, we would like to primarily take advantage of
of the Spark architecture we have built so far in a previous
project, as well as the automated tooling in previous program-
ming assignments. The complexity of the project necessitates
four people as we are combining ideas of the cloud, distributed
workloads, full-stack development, and machine/deep learning
core concepts. Our goal is to match the industry way of deploy-
ing and utilizing machine learning (ML) models in the cloud
by practicing using a productionized data pipeline system for
real-time processing. Overall, our plan is to combine and
utilize methods learned in this class for this capstone project.

II. DESIGN, ARCHITECTURE, AND IMPLEMENTATION

Herein, we enumerate the design, architecture, and imple-
mentation details of the three salient portions of our project,
including the: 1) cloud-based, 2) full-stack-based, and 3) deep-
learning-based components of our project.

A. Cloud-Based Implementation Details

Our cloud based architecture aims to advance the software
we have previously built in our programming assignments
(Figure 2). Our main goal is to digitally draw digits on
the client interface and return the digit drawn to the client
by deploying several Docker containers to handle the cloud
architecture. All of the Docker containers we create will be
managed through Kubernetes and balanced over two VMs,
specifically VM2 and VM3. Both VMs will be launched using
IaaS software such as Ansible and Vagrant. In fact, Vagrant
will act as the VM, not on the client machine, but on our
machine to run the appropriate Ansible playbook and deploy
the necessary service. We will use a main master playbook to
handle the operations and will maintain IP-agnostic function-
ality. This way, we do not need to consider the availability of
floating IP addresses in Chameleon KVMs. We will further
break down our master playbook into the following sections:
1) local VM package installation; 2) VM creation; 3) firewall
setting configuration; 4) cloud package installation; 5) Docker
and Kubernetes installation; 6) kubemaster assignment; 7)
Kubeworker2 assignment; 8) Kafka/ZooKeeper image creation
and deployment; 9) CouchDB image creation and deployment;



Fig. 1: An Overview of the Interaction between the Cloud-Based and Web-Based Infrastructure.

Fig. 2: An Overview of the Cloud Infrastructure Partitioned Across Both VMs.

10) Spark image creation and deployment; 11) consumer im-
age creation and deployment; 12) NGINX image creation and
deployment; and 13) Spark image creation and deployment.

We intend to create VM2 as an ml.large instance and VM3
as an ml.medium instance to balance load while also consid-
ering necessary usage for the Chameleon compute resources.
The firewall configuration settings will match the security ports
allocated in our security along with additional functionality.
Docker and Kubernetes will be installed such that the master
is tainted and Docker can run as a daemon.

The client will access the web-interface, our front-end code,
which will be hosted and load-balanced using NGINX (port
30009). We will maintain three NGINX replicas, which will
be managed by Kubernetes. Our client will not interact with
the Kafka/ZooKeeper brokers or consumer code; instead, for
our purposes, we will create a backend that takes in the
information sent by the front-end. Specifically, we will deploy

a Flask backend (port 30005) in a Docker container using the
latest Ubuntu image so as to serve the necessary functionality
through an API request. The back-end will then send the
information to a randomly assignment Kafka broker. We will
maintain three Kafka brokers (ports 30001-30003) and one
zookeeper node (port 30000) to balance the Kafka brokers.
Once the backend sends the information to the Kafka broker,
then the consumer will process that information. The consumer
will run as a job hosted on a docker container managed by
Kubernetes. The consumer will then use our deep learning
model that we already trained in a distributed fashion using
Spark to classify the input array and send a probability array
to CouchDB (port 30006). The backend Flask container will
then be able to take the CouchDB information, construct a
Pandas DataFrame, search for the appropriate array key, and
send the answer and probability array to the NGINX hosted
front-end. The client will then have the answer as a prediction



and a graph listing the probabilities. This combination allows
our system to be scalable while maintaining high reliability
and durability.

B. Full-Stack Implementation Details

Fig. 3: What the User Should Expect after Drawing a Three.

Our project distributes the full-stack nature of our web
application into a front-end and a back-end. In the front-end,
we utilized JavaScript to dynamically render HTML content
based on the results of the cloud and deep learning pipeline. In
particular, JavaScript and this back-end/front-end architectural
support the overall UI/UX experience that the user is exposed
to, as well as communicates with our cloud-based deployment
of our deep learning model.

The back end runs on Flask, which was chosen for ease of
use due to its implementation in Python, which is also used as
the primary language to support our cloud infrastructure. Our
backend’s main role is simply to supply an API endpoint for
the frontend to make prediction. It provides a POST request
that returns digit inferences upon receiving the image data.

The features of our application (Figure 3) are enumerated
below:

• Links to the referenced codebase as well as our deployed
codebase on GitHub. The link to the GitHub repository
and details regarding the repository are included in Ap-
pendix A.

• A small canvas, wherein the user can draw the digit they
would like to test the model with. In particular, there
are three main buttons: 1) Clear Canvas, which clears
the drawing canvas; 2) Predict, which allows the user
to send their data as a POST request to our backend,
which further processes the data via our cloud-based deep
learning pipeline; 3) Clear Predictions, which clears the
buffer of predicted numbers.

• A prediction pane, which shows the buffer of numbers
that the user has requested to be predicted.

• A prediction graph, which shows the ranges of options of
numbers (0 - 9), and the associated probability that the
model outputted for each number. Of course, the number
associated with the maximum probability is logged in the
prediction pane.

C. Deep Learning Implementation Details

To implement the deep learning training pipelines, we used
Spark, which is known for its parallel computing properties.
Since our project aims to explore training a neural network in
a distributed fashion, Spark was a natural choice. Specifically,
we took advantage of Spark’s ML libraries by using the
wrapper Python packages such as Elephas. We spent much
time understanding the Pythonic version of the implemented
libraries as we wanted to take advantage of TensorFlow and
Keras, which are easily distributed as Python packages.

In the training phase of our model, we utilize both PySpark
and Keras to create and train a deep neural network. The input
data is 28 by 28 pixel images of handwritten digits, which is
flattened and scaled down to a value between 0 and 1. In
particular, in order to facilitate the process of model inference
for our web application, we first define the model that is
trained. In particular, we use the default MNIST dataset from
Keras. A model network is created with Keras as well, with
the following layers: 1) a Conv2D layer, 2) a MaxPooling2D
layer, 3) a Flatten layer, and 4) two Dense layers. Leveraging
this model, we are then able to train on the aforementioned
MNIST dataset, which is of 60,000 images, 10% of which
is used to validate our model. The hyperparameters of our
network include: a batch size of 64 and 10 epochs. We utilize
spark to train our model over 5 distinct workers. We computed
the average training time, 144.155361 seconds, over 10 times
training the model.

Then, we evaluate the effectiveness of our trained model
using the MNIST test databaset. In particular, the trained
model, on a testbed of 10,000 images. Over 10 time average
of our trained model, we computed an average accuracy of
0.974500 on our test dataset. It is important to note that the
MNIST dataset included data that were handwritten; however,
we are trying to classify digitally drawn digits, which may be
harder to draw the correct digit. Therefore, it is expected that
the performance of our implemented would not be as good as
the test dataset results.

III. EVALUATION

To evaluate the efficacy of our pipeline, we will analyze
the following three separate categories holistically: 1) the
training time and accuracy of our model in theory; 2) the
quality of load balancing for website hosting; and 3) the
quality of load balancing for the prediction algorithm. The
methods and details of each evaluation categories are explained
below, although due to time, scope, and cost constraints,
the evaluations only give an rough idea of the outlooks of
the project, and more thorough testings could potentially be
employed in the future to improve the quality and resilience
of the pipeline.



A. Training Time and Accuracy

Since the focus of the project is to test accuracy of predict-
ing handwritten digits, we decide to test the accuracy of the
prediction by simply writing digits manually and recording
the results. Essentially, we manually tested 100 digits, from
0 through 9, with each digit being written ten times, and we
record the prediction accuracy for all 100 digits.

Fig. 4: An Example of an Incorrect Prediction.

Overall, it seems like our model is quite accurate on some
digits, while being less accurate on other digits (Figure 4).
Note that for this evaluation, we only consider the primary
prediction and do not take into account the confidence interval.
Below is a graph of the accuracy (Figure 5) of each digit after
10 handwritten attempts each.

Fig. 5: Manual Testing Accuracy for Each Digit.

Based on the manual testing, we can see that the testing
accuracy is very good for 2, at 100% after 10 trials, and
fairly good for 3 and 5, both at 90%. On the other hand,
the testing accuracy is relatively low for 7 and 8 at 50%.
The overall testing accuracy for the model is at 74%. This
overall testing accuracy meets the satisfactory threshold for

the proof of concept project. However, there is most definitely
room for improvement in terms of the machine learning
model for handwritten digit recognition and perhaps even the
training data set for future applications that require higher digit
recognition accuracy.

B. Load Balancing for Website Hosting

In order to test the load balancing for website hosting, we
used a tool called locust, it is an open source Python library
that is commonly used for load testing. Not only does it have
the ability of implement complex user flows, it also has a web
interface that allows visualization of the results as charts with
important information.

To test website hosting, we first defined the number of users
(peak concurrency) as 50 users (peak concurrency), with a
spawn rate (users added/stopped per second) of 5. Then we
swarm the website with an arbitrary GET request. Clearly, this
is too much traffic for our websites and most requests resulted
in an HTTPError (429 Client Error: Too Many Requests for
url: http://stratus-final/). Using the 50 users, we issued a total
of approximately 10,000 requests for the website, and has
a failure rate of about 98% with an average response time
of 306ms. The visual graphs generated by the locust library
is shown below (Figure 6-8 in APPENDIX B) for these
parameters.

The average response time is very good, although this is
likely due to HTTPError being easier to forward as the failure
rate he failure rate is unacceptably high for these paremeters.
This is not desirable since a fast response time containing
an error message as opposed to the actual content does not
indicate successful and meaningful user interaction with the
website interface.

We then lowered both the user count and spawn rate to
25 users and 3 respectively. After issuing approximately 1000
GET requests, we have a failure rate of 3% and an average
response time of 7123ms. The visual representation for 25
users is shown below (Figure 9-11 in Appendix B).

The response time is significantly longer, but the failure
rate is much lower, meaning the GET requests are mostly
successfully and the website actually loaded for a majority
of the generated users. The longer response time also more
accurately depict the expected amount of response time needed
for the interaction with the interface to successfully complete
with no errors.

Last but not least, we tried a user count of 10 with a
spawn rate of 1. We issued a total of 1250 requests. These
parameters yielded the best results so far with a failure rate
of approximately 0% (only 3 failures out of 1250 requests)
and an average response time of 2950ms. The visualization is
shown below (Figure 12-14 in Appendix B).

These parameters seems to reflect the best operating condi-
tions for our demo server using our current server resources
with load balancing implemented for website hosting.

Overall, the results so far have shown that our load balanc-
ing implementation can easily handle 10 users simultaneously
with relatively fast response times with minimal failures. For



25 users, occasional failures do occur, and the response times
are much slower, although a failure of 3% is acceptable in our
opinions. For 50 users, the speed and volume of the requests
proved to be too much to handle for our server. Anything
beyond 50 users will likely show the same result of mostly
failures.

C. Load Balancing for Prediction Algorithm

Our next step is to verify the load balancing robustness
of our implementation. Since we have already conducted
accuracy testing for the machine learning model, we decided
that we do not actually need a reliable training data set as part
of the POST request tests to the server. Instead, we issued
POST requests using a dummy array filled with meaningless
numbers that supposedly represent the pixels in the drawing.
The array has a length of 784 and normally it was converted
from the 28x28 drawing using the canvas using our front end
code.

Since we have already established that the website cannot
handle 50 users simultaneously as shown in section III. (b), we
will only be doing POST request load balance testing for 25
users and 10 users. We issued an approximately 4300 requests,
and we have an average failure rate of only 1% and an average
response time of 7412 ms. Note that we decided to issue more
requests than originally planned since we were surprised to see
that the failure rate for POST request swarming is lower than
GET request swarming.

Note that we kept the swarming rate the same at 3 for 25
users, and 1 for 10 users. As far as we know, this should
not have a big impact on the results as seen by the graphic
representation (Figure 15-20 in Appendix B).

For 10 users, the results are exceptional, as our load bal-
ancing could handle 10 users at a time using limited resources
and run machine learning algorithm on the thousands of POST
requests sent. We issued about 1000 requests, and we have less
than 1% failure rate, and an average response time of 3040ms.

For the 1% failure that did occur, most of them occurred
during a particular interval, possibly due to server or internet
hiccups at an unknown stage of the pipeline. We are unable
to determine the exact cause for this failure at the moment
although a thorough audit of the pipeline logs could potentially
reveal the exact position and stage of the server or internet
hiccups.

Overall, the results are satisfactory under our current con-
ditions and resources used for load balancing. As detailed
in Section II, our designs and cloud-based implementations
are scalable and can be adapted to handle more users, more
internet traffic, or perhaps even more complicated machine
learning tasks in the future.

IV. QUALITATIVE TESTING AND DEBUGGING

In terms of pipeline testing that cannot be quantified nu-
merically or graphically, we have done exhaustive interaction
with the front-end of the webpage in order to spot any
UI/UX errors, or general bugs that would inhibit the user from
utilizing our program. In order to test the back-end POST and

GET requests, we used tooling like Postman in order to query
our APIs to ensure correct output was being returned. In order
to test the efficacy of our model, a standard test bed of data
was evaluated, as described in Section III. A critical evaluation
of our pipeline is also provided.

V. FUTURE DIRECTIONS OF STRATUS

The initial goal of our project devised at the time of the
proposal was to answer the following questions: 1) can we
recognize digitally drawn digits using a deep learning model
trained on the cloud; and 2) can we train a deep neural
network in a distributed fashion using Spark ML. Exploring
both of these particular queries in this project served as an
initial MVP in order to deliver a proof-of-concept. Since
we found that both sub-goals are indeed possible, we would
like to expand our project in three main ways: 1) improved
features and associated scalability; 2) accurate prediction; and
3) deployment in a large-scale production environment.

In particular, scalability in this project is primarily delivered
via the use of Spark ML to allow for distributed training,
as well as Docker and Kuberenetes to achieve the use of
multiple workers within our two primary virtual machines
upon which our application is deployed. However, as more
features are added to the application, the scalability of the
application, to handle both the load and expected increase in
traffic must also be more resilient. For instance, a primary
feature of interest that we would like to implement is the use
of a multi-digit MNIST model, to allow the user to directly
draw a multi-digit number, rather the just a single digit. The
issue of scalability becomes more complex as now the size
of the input into our model also scales with the length of the
user input. Dealing with large input datasets into our website
will present a challenge and will necessitate for a robust load
handling protocol, similar to previous projects with respect to
the energy counter dataset. Furthermore, leveraging more load
balancing techniques as well as autoscaling would be nice
to have in order to make the website more resilient than it
currently is.

Furthermore, another area of growth is improving the ro-
bustness of the pre-trained model that is leveraged within Stra-
tus for predictions. In particular, the current method in which
our product works is that it fetches the user input and then
down-samples it into an array of 28x28; such extreme down-
sampling from the size of the canvas on the Document Object
Model (DOM) to the input array of the model causes a loss
of feature generality, and mitigates the salient distinguishing
features of the user input that may distinguish it from other
potential digits. A solution to this would be to preprocess our
network, during the training phase, with input arrays that have
been exposed to extreme down-sampling so as to allow for our
model to perform more robustly on arrays with features that
are not so clear.

Finally, another area of growth would be to deploy our
application in a production-like environment. While we did
our best to emulate high stress and load to test our application,
it would not truly match the experience of having several users



submitting drawings to our websites, and seeing how our end-
to-end pipeline manages multiple requests at once to our cloud
infrastructure. Seeing the behavior of our product, specifically
due to the deep learning component, which can suffer from
large inference times, would be valuable information to have
and would be a much-needed next step in our project.

VI. CONCLUSION

Stratus is a proof-of-concept which leverages distributed
cloud techniques and tools such as Spark ML, Apache Kafka,
Chameleon Cloud, Ansible, Vagrant, Python Flask, Docker,
and Kuberenetes to implement a deep learning application. We
have developed a holistic end-to-end pipeline by which a user
is able to input a handwritten digit via a full stack application.
The encoded drawing is sent to the cloud-infrastructure where
a deep learning model predicts the number that the user drew
and returns the prediction back to the user. We found success
utilizing distributed and auto-scaling concepts via Spark, K8s,
and NGINX. Future directions of this work include: 1) im-
proving scalability, 2) increasing robustness; and 3) real-world
deployment. Overall, the novelty in this work is in leveraging
the existing technologies used in class to create a real-world,
production-grade full-stack, end-to-end application.

ACKNOWLEDGMENT

We would like to thank Dr. Aniruddha Gokhale (Vanderbilt
University) for helping us learn more about cloud infrastruc-
ture at scale, as well as distributed systems concepts, which
helped us conclude this project.

This group project was completed as part of Immersion
Vanderbilt, a degree requirement for all undergraduate students
at Vandebrilt University. Full details of the requirement can
be found here: https://www.vanderbilt.edu/immersion/. The
project was demoed as part of Immersion Vanderbilt showcase
at the end of Fall 2021 and the complete submission including
the technical report and the complete source code was accepted
by the Office of Immersion Resources on Apr 29, 2022 after
an extensive review by a committee of faculty members.

REFERENCES

[1] Serrano, Nicolas, Gorka Gallardo, and Josune Her-
nantes.“Infrastructure as a service and cloud technolo-
gies.” IEEE Software 32.2 (2015): 30-36.

[2] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton.
“Deep learning.”s nature 521.7553 (2015): 436-444.

[3] Deng, Li. ”The mnist database of handwritten digit images
for machine learning research [best of the web].” IEEE
Signal Processing Magazine 29.6 (2012): 141-142.

[4] Arpteg, Anders, et al. ”Software engineering challenges of
deep learning.” 2018 44th Euromicro Conference on Soft-
ware Engineering and Advanced Applications (SEAA).
IEEE, 2018.

APPENDIX A

In this appendix, we include the full GitHub repository that
contains all the files we used to construct and deploy the
project with detailed explanation for reproduction of both the
server deployment within Chameleon Cloud and our demon-
strated results. The GitHub repository is publicly available at
https://github.com/ruidazeng/stratus under the MIT License.
The original GitHub repository used during development can
also be found at https://github.com/aadarshjha/stratus, it con-
tains almost identical content, although this repository does
not contain explicit licensing and is therefore under exclusive
copyright by default.

Each deployment folder contains server configuration files
in YAML format and the dockerfile used by Docker to
build the images. The configuration files include the speci-
fications and the ports and protocol to facilitate the service.
These deployment folders contain most of the individual files
needed to setup consumer, CouchDB, Flask, Kafka broker and
zookeeper, NGINX, and Spark ML. These YAML files are
included and referenced in the playbook_demo_master.
yml, our master playbook used to execute our plays in order:
(1) install packages on local VMs; (2) create chameleon VMs;
(3) install packages on Chameleon VMs; (4) configure cloud
files; (5) installing docker and kubernetes; (6) start kubernetes
and taint master on VM2; (7) start kubernetes on VM3; (8)
start docker image and create registry; (10) run Spark pipeline;
(11) run NGINX pipeline; (12) run consumer.

The Python file producerVM1.py are used alongside
shellcodes iter_script.sh and bootstrap.sh to de-
ploy NGINX, Spark ML, and Kafka broker and zookeeper.
The Python file consumer.py serves as the consumer in our
machine learning pipeline within our cloud computing model.
The MyInventory, Vagrantfile, and ansible.cfg
are straightforward configuration files required to deploy the
virtual machines on Chameleon Cloud.

Last but not least, Python file locustfile.py contains
source code we used to test both our load balancing quality
for both the website hosting and for the prediction algorithm
in Section III.

For further information and clarification regading the source
code and reproduction of our results, the authors can be
reached via the email addresses or via Issues/Pull request on
GitHub.

APPENDIX B

In this appendix, we include Figure 6-20. All of the figures
are referenced and addressed in Section III. Evaluation and
contain our quantitative test results for the load balancing effi-
ciency and efficacy. We defined our user behavior using Python
codes, with GET request used to test website hosting, and
POST request used to test prediction algorithm. We then used
the open source load testing tool LOCUST (https://locust.io/ )
to swarm our system with the defined numbers of simultaneous
users to utilitized the interface provided to generate the results
represented by graphs.

https://www.vanderbilt.edu/immersion/
https://github.com/ruidazeng/stratus
https://github.com/aadarshjha/stratus
https://locust.io/


Fig. 6: Number of Users with respect to Time for 50 Users.

Fig. 7: Total Requests Per Second for 50 Users.

Fig. 8: Response Times for 50 Users.



Fig. 9: Number of Users with respect to Time for 25 Users.

Fig. 10: Total GET Requests Per Second for 25 Users.

Fig. 11: Response Times for 25 Users.



Fig. 12: Number of Users with respect to Time for 10 Users.

Fig. 13: Total GET Requests Per Second for 10 Users.

Fig. 14: Response Times for 10 Users.



Fig. 15: Number of Users with respect to Time for 25 Users.

Fig. 16: Total POST Requests Per Second for 25 Users.

Fig. 17: Response Times for 25 Users.



Fig. 18: Number of Users with respect to Time for 10 Users.

Fig. 19: Total POST Requests Per Second for 10 Users.

Fig. 20: Response Times for 10 Users.


	Introduction
	Design, Architecture, and Implementation
	Cloud-Based Implementation Details
	Full-Stack Implementation Details
	Deep Learning Implementation Details

	Evaluation
	Training Time and Accuracy
	Load Balancing for Website Hosting
	Load Balancing for Prediction Algorithm

	Qualitative Testing and Debugging
	Future Directions Of Stratus
	Conclusion
	References

